Annex A1-2 Summary report on methods and evaluation tools

Subject Deliverable under Action A.1	Project acronym / Ref. No. Etanolix 2.0 for LIFE+ / LIFE12 ENV/SE/000529	Date 21/08/2015
Issued by	Company / Department	
Linda Werner (PM/Technical Manager)	St1 Refinery AB / Technical Department	

Summary report on methods and evaluation tools

Management tools

The project plan has been an important document for everybody in the St1 organization involved in the project. Starting from higher management and the Steering Group members (PMG) and thereafter distributed out in the organization to all personnel to raise awareness of expectations, responsibilities and deadlines to deliver results on time and within budget.

Normally, when the refinery works on projects the focus is on technical solutions, economics and time. Project management from a normal industry- technical perspective is something the refinery is experienced and successful in. Procedures are implemented since way back and used as common practice within the organization. Having the possibility to work with a granted LIFE+ projects is increasing the dimensions compared to a traditional refinery project in many ways since e.g. Communication, Dissemination, Networking and Socio-economic aspects are included as part of the project. This is increasing the normal project scope and will help focusing on other important deliveries and results; meaning different methodologies and evaluation factors are needed to be applied. This is in one way a challenging task, but at the same time an opportunity for development and improvement to "think out of the box".

The methods and tools for e.g. time reporting for personnel and the cost control for the project has administrative been add on tools to the refinery's existing methods that are obliged to follow as well.

Methods employed

One important part in the project has been to develop evaluation methods of the technical production processes to ensure the plant will work according to refinery integration and management quality systems.

• To be able to operate the plant the process units have to be monitored continuously (via DCS and ABB).

- The product and bi-product, ethanol and stillage, has to be controlled to fulfill the specifications defined.
- The environmental aspects for the pilot plant have to be monitored, some of the parameters also to be analyzed by external laboratory to comply with authority requirements. Feed-stock volume of received renewables to be processed is to be measured and documented. Methods for monitoring and evaluation has been defined and documented in Control frameworks or instructions in the refinery.

Sustainability criteria, Greenhouse gas calculations and Life cycle analysis are methods still to be developed and executed. Back-ground data required to enable the evaluation of these parameters are already defined and data gathering, for parameters already able to be measured, has already started.

Process control, unit efficiency and KPIs:

The methods and evaluation tools for the daily control of the pilot plants operation parameters have been selected by the refinery Technical Working Group together with the St1 Biofuels organization.

- Responsible for the process operational activities is the Operations Manager for the refinery, Johan Dahlberg. Action owner for the daily evaluation regarding process parameters are the Process Engineer Lars Olausson. He is analyzing the performance data from process trends and laboratory analysis. The data collecting and reporting on throughputs, energy, water, unit efficiency and utility use is also done by the Process Engineer according to procedures developed.
- Responsible for the daily practical operations of the receiving station and the integration is the refinery's Maintenance manager Oskar Bengtsson, who has two dedicated persons managing the operation of the receiving feed-stock material, water treatment, on-line instrument controls, basic process measurements and housekeeping etc.

Raw material as feed-stock, ethanol, stillage and waste:

- Responsible for the daily supply, distribution and logistics processes is Roger Sjöström, hired explicitly for the project. Methods and evaluations for these tasks to be performed are developed and implemented. Still to be fully incorporated in the refinery documentation framework.
- The product quality acceptance, before pumping the ethanol, into refinery tank farm system and the actual pump ordering is done by the refinery Supply department. A new procedure (RDP 8.07) incorporated and implemented in refinery quality system.

Environmental monitoring:

• Responsible to fulfill the environmental criteria is the Health-, Safety-, and Security Manager Eva Bergström, who also is responsible to report the results to the local authorities. This is in accordance with normal refinery procedures and with Swedish legislation. Control framework is agreed between St1 Refinery AB and Länsstyrelsen I Västra Götaland, dated on 07/07/2015. The Etanolix 2.0 Control framework, and thereby the key performance indicators to evaluated the pilot plant on environmental efficiency, is an official document.

Laboratory Analysis:

Laboratory measurements in line with well-defined and repetitive methods are essential to enable any pilot plant operation. Quality control of products, test runs and demonstration are all depending on correct results from sampling and analysis. To have methods and evaluation fit for purpose and being able to draw conclusions from trustful data is essential for a production unit as this. The most of the analysis will be performed within the refinery's internal Laboratory department. See below instructions for parameters to be analyzed and the frequency.

Point of analyzis	Analyzis		
Hydrolysis to fermentation	pH-value		
SP-12002 after mash-cooler E-7802	Dry solids m/m%		
Temp 68°C			
	Compare pH-result with online-measuring 78QI1		
Once a day 08:00	(hydrolysis)		
Fermentation	pH-value		
SP-13001 Fermentation vessel V-7806	Dry solids m/m%		
SP-13001 Fermentation vessel V-7806	Iodine starch		
SP-13001 Fermentation vessel V-7806			
	Troubleshooting: sugar (glucose, maltose,		
Once a day 08:00	malotriose), glycerol, ethanol, lactic acid and acidic acid with HPLC		
Animal Feed/Stillage	pH-value		
SP-17003	Dry solids m/m%		
	Salmonella samples 2/week		
When at least half-full tank or during loading of	Specific analysis/limits to be defined due to		
truck.	customer demand or to HACCP (Hazard Analysis		
	and Critical Control Points).		

Deliverable under Action A.1

Project acronym / Ref. No. Etanolix 2.0 for LIFE+ / LIFE12 ENV/SE/000529

	Sample to be saved for 2 month.		
Process sewer water (online measuring)	Demand from Environment authorities and		
Position 78FIC24 Flödesmätare	agreement with Refinery.		
Postion 78QI4 pH-mätare			
Position 78TIC30 temperaturmätning			
SP-22001	pH		
	Suspended solids m/m%		
Once a day 08:00	Chlorides m/m%		
Once a week	BOD7		
	COD		
	Total nitrogen		
	Total phosphorus		
	conductivity		

Point of analysis	Analysis	Notes	Spec
After warm retentate cooler E-7815 SP-15002	pHe Conductivity	If low conductivity must pHe be 6,5- 9,0.	6,5-9,0 < 2,5uS/cm
Twice a day 08:00 and 14:00	Alcoholic strength m/m/density	GC for test of	> 99,7
	Water S	feedstock or with trouble shooting	< 0,3 m/m%
	SO4		< 10 mg/kg
	Total acidity		< 4 mg/kg
Ethanol from distillation SP-15003	рНе		< 0,007 m/m% 6,5-9,0
Twice a day 08:00 and 14:00	Alcoholic strength m/m%/density	Compare density with online- measuring 78DI32.	
SP-15004	рНе	130°C	
Twice a day 08:00 and 14:00	Color		Like "tea"
	Alcoholic strength m/m/density		

Distillation and dehydration analysis schedule

Subject

Deliverable under Action A.1

Project acronym / Ref. No. Etanolix 2.0 for LIFE+ / LIFE12 ENV/SE/000529 Date 21/08/2015

Permeate 1	pHe	135°C	
SP 15005	1		
	Alcoholic strength		< 30 m/m%
Once a day 08:00	m/m/density		
SP-15006	pHe		
Once a day 08:00	Alcoholic strength		< 20 m/m%
	m/m/density		
Product tank T-7801 before	pHe	GC if alcoholic	6,5-9,0
release to refinery		strength less than	
SP-16001	Alcoholic strength	99,7 m/m% or if	> 99,7 m/m%
	m/m/density	there have been big	
		changes in	
	Water content	feedstock.	
			< 0,3 m/m%
	conductivity		< 2,5uS/cm

Product specification from distillation

Analysis	Unit	Limit	Method	
Color		Clear and without	EN 15769	
		color		
Total Acidity (as acidic	m/m%	< 0,007	EN 15491	
acid)				
Ethanol content	m/m%	> 90,0	EN 15721	
More saturated carbons	m/m%	< 2,0	EN 15721	
(C3-C5)				
Methanol	m/m%	< 1,0	EN 15721	
рНе		6,0-9,0	ASTM D 6423	
Unorganic clorides	mg/kg	< 6,0	EN 15484	
_			EN 15492	
Copper	mg/kg	<0,1	EN 15488	
			EN 15837	
Phosporus	mg/kg	< 0,15	EN 15485	
_			EN 15837	
Sulphur	mg/kg	< 10	EN15485	
			EN 15486	
Sulphates	mg/kg	< 4,0	EN 15492	
Volatile content	mg/100 ml	<10	EN 15691	

Product specification from dehydration

Deliverable under Action A.1

Project acronym / Ref. No. Etanolix 2.0 for LIFE+ / LIFE12 ENV/SE/000529 Date 21/08/2015

Analysis	Unit	Limit	Method
Color		Clear and without color	EN 15769
Total Acidity (as acidic acid)	m/m%	< 0,007	EN 15491
Ethanol content	m/m%	> 98,7	EN 15721
More saturated carbons	m/m%	< 2,0	EN 15721
(C3-C5)			
Methanol	m/m%	< 1,0	EN 15721
рНе		6,0-9,0	ASTM D 6423
Unorganic clorides	mg/kg	< 6,0	EN 15484
_			EN 15492
Copper	mg/kg	<0,1	EN 15488
			EN 15837
Phosporus	mg/kg	< 0,15	EN 15485
			EN 15837
Sulphur	mg/kg	< 10	EN15485
			EN 15486
Sulphates	mg/kg	< 4,0	EN 15492
Water content	m/m%	<0,300	EN 15489
			EN 15692
Conductivity	uS/cm	<2,5	EN 15938
Volatile content	mg/100 ml	<10	EN 15691

Estimated content in Process Sewer water to water treatment plant

Analysis	Unit	Min	Normal	Max	Amount Kg/day
рН		6	7	9	
Total phosporus	mg/l	0,2	2,5	5	0,03
Total Nitrogen	mg/l	2,5	30	56	0,41
COD	mg/l	6800	8500	13000	116
BOD7	mg/l	5900	6500	10700	89
Total solids	mg/l	10	100	200	7

